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LETTER TO THE EDITOR 

Integrability of a one-dimensional Fermi system with 
magnetic impurities 

E H Rezayi-l and J Sak:l: 
.; Center for Pure and Applied Physical Sciences, University of California, San Diego, La 
Jolla, CA 92093, USA 
:! Serin Physics Laboratory, Rutgers University, New Brunswick, NJ 08903, USA 

Received 17 January 1983 

Abstract. A one-dimensional metal containing interacting electrons moving in both 
directions and magnetic impurities is studied. The model is shown to be integrable by 
the Bethe ansatz provided that an algebraic relation is satisfied between the coupling 
constants of the electron4ectron and electron-impurity interactions. 

In the past few years the method of Bethe (Bethe 1931, Gaudin 1967, Yang 1967) 
known as the Bethe ansatz has been employed to find the spectrum of some field 
theory models in 1 + 1 dimensions. Two recent examples are the chiral invariant 
Gross-Neveu (CIGN) model (Belavin 1979, Andrei and Lowenstein 1980) and the 
Kondo problem (Andrei 1980, Vigman 1980). The former is the field theoretic 
analogue of the one-dimensional Fermi system with backscattering but without 
Umklupps. This model is of physical interest for quasi-one-dimensional conductors 
(Solyom 1979 and references therein). In this paper we consider a more general 
model that contains both CIGN and Kondo models as special cases. We consider the 
Hamiltonian 

GI and lj12 are the fields of the right- and left-going electrons, 40, with vanishing 
bandwidth, corresponds to the impurities; the terms with the coupling constant J are 
the Kondo interaction, U is the spin exchange between electrons which is equivalent 
(leaving aside the problems with the cut-offs) to the backscattering; the last two terms, 
V and @, are potential scatterings between electrons and impurities and between left- 
and right-going electrons. 

In addition to having a direct relevance to quasi-one-dimensional conductors with 
magnetic impurities, our model provides a testing ground with regard to questions 
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such as how the presence of the left-going electrons affects the magnetic behaviour 
of impurities. For example, the nature of the conduction electron induced RKKY-type 
interaction among impurities is of some interest. No such interaction exists in the 
Kondo model (Andrei 1980, Vigman 1980). Despite the fact that the Kondo model 
with only a single impurity is physically significant, the question of the existence of 
RKKY interactions in integrable models remains an interesting one. In this paper we 
present the conditions for the integrability of the model and obtain the equations that 
determine the spectrum, while postponing discussions of more detailed questions to 
forthcoming publications. 

It turns out that the qualitative features of the problem, such as integrability, do 
not depend on the values of the potential terms V and a; their presence only makes 
the formulae more cumbersome. For this reason we perform the subsequent analysis 
only for the special case V = 0 and 

The numbers of left- and right-going electrons are separately conserved as well 
as the number of impurities. This enables us to transcribe the problem in the first 
quantisation. Moreover, it is advantageous to consider the three kinds of particles as 
identical but equipped with a new quantum number which is sometimes called 'purity' 
and which distinguishes between different kinds of particles. If the ith particle is a 
right-going electron, its purity bi = 1, if it is a left-going electron, bi = -1 and, finally, 
if it is an impurity, bi = 0. Now we can rewrite the Hamiltonian (l), having set 
V = 0 = 0, in the form 

= 0. 

-fU 1 S(X, -x,)o, * ~ l b l b , ( l  -b,b,). (2) 

The wavefunctions depend on space, spin and purity coordinates: 9 ( x l ,  . . . , x N ;  
~ 1 , .  . . , C N ;  61,. . . , b ~ ) .  We do not lose any eigenstates if we require that the 
wavefunctions be antisymmetric with respect to the exchange of the coordinates of 
two particles. This allows us to eliminate the spin operators from the Hamiltonian, 
using the identity 

(3) 

where PfG is the operator which interchanges the purity coordinates of the ith and jth 
particle. The final form of the Hamiltonian is 

H = -i 1 b,--2J 

1 <I 

s (x, -XI )a, ' a, = -6 ( X I  - x,) - 2s (x, - x,)PfG 

~a 
(bf - b : ) 2 S ( x ,  - x , ) P ;  -J (bf  -6,2)2S(x, -x,) 

, = I  ax, I <I I < J  

+ U 1 b,b,(l -b ,b , )S(x ,  -X,)Pi +fu 1 b,b,(l -b ,b , )S(x ,  -x,). (4) 

The operator (4) does not contain spin. We look for its eigenfunctions in the form 
given by the Bethe ansatz. Let Q be a permutation of N objects (N  is the total 
number of electrons and impurities). The sector Q in the coordinate space is defined 
by the inequalities 0 < X Q ~  < I Q 2  . . . < XQN < L. In this sector the wavefunction has 
the form 

I < J  
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In ( 5 )  the coefficients (QISIP) and the parameters ki are to be determined, the values 
of ai’s can be prescribed, e.g., by a 1  = . . . = U N ~  = 0, a N o + l  = . . . = C Z N ~ + N ,  = 1, ~ N ~ + N ~ + I  = 
. , . = aN = -1. The wavefunction 9, defined to be equal to 90 in the sector Q for 
all Q, must obey three conditions: (1) it must satisfy the Schrodinger equation (this 
condition leads to a prescription to calculate the quantities (Q151P)); (2) it must satisfy 
the periodic boundary conditions, q(. . . xi + L. . .) = Q(. . . x i  . . .) (this will, as for free 
particles, determine the possible values of /ti’s); (3) 9 must belong to the representation 
[2M1N-ZM] of the permutation group S N .  The number M is connected to the spin S 
of the system by the relation S = N/2 -M. (Since the Hamiltonian does not contain 
the spins, it is through this condition that the wavefunction depends on the total spin 
of the system.) The energy eigenvalue corresponding to the eigenfunction ( 5 )  is 

N 

E = ajkP (6)  
j = l  

We start with the first condition which relates the jumps of the wavefunction on 
the boundaries of the sectors to the intensity of the delta-function interaction. The 
result is a set of passage formulae for computation of the coefficients (QltlP). Let a, 
i, i be integers, a < N, i, i s N. Then the passage formulae can be written as 

if ai # ai, and YYm+’ = identity if ai = ai. In (8) f = J/2 when ai and ai correspond to 
an electron-impurity pair (ai = 0, aj = 1, etc), andf = U/8 if the pair is electron-electron 
(e.g. ai = 1, ai = -1). The operator PmVm+’ acts in the N!-dimensional space of the 
coefficients (Q 15 IP) : 

(9) 

The passage formulae (7) overdetermine the coefficients (Q151P) and there arises 
the problem of consistency. The operators Y must satisfy the following consistency 
relations (Yang 1967, Baxter 1968): 

Pmsm+l (Q151P) = (Qb, m + 1)ItIP). 

yyn+l y; .m+l  = I ,  (10) 

(1 1)  

Condition (10) is satisfied by (8) for any f and so is condition (11) when at least two 
of the quantum numbers ai, ai, a k  are equal. However, when they are all different, 
equation (11) is not satisfied automatically. All six possibilities lead to the same 
constraint on the coupling constants J and U: the problem is integrable by Bethe 
ansatz if 

(12) 

The existence of this integrability condition is the main new result of this paper. (In 
the more general case when the potential scattering interactions V and 0 do not 
vanish, equation (12) will be replaced by a more complicated algebraic relation 
depending on V and 0.) 

y , y m + l y ; + l . m + 2  m . m + l  - m + l , m + 2  m , m + l  m + l . m + 2  Yij - y i j  Y i k  Y j k  

(4 - 3 J 2 ) / J  = (1 6 - 3 U’) /4 U. 



L252 Letter to the Editor 

Assuming (12) satisfied, the calculation proceeds as usual (Yang 1967). The 
symmetry condition is imposed by requiring that the operators POb belong to the 
[2M 1N-2M] representation of the symmetry group SN. The periodic boundary condi- 
tions determine the momenta ki through the set of N eigenvalue problems 

Xi+l,j. . . XLjXij. . . Xj-l,j - @  =exp(ikjl)@, j = l , 2  , . . . ,  N. (13) 

Here the operators X:j are defined as 

X!. 11 = 6 . .  I1 -a,JJ” 1 9 (14) 

c = 2 J / ( 1 - ~ 2 ) = 2 U / ( l - & U 2 ) .  (15) 

and the effective coupling constant c is 

The two different expressions for c in (15) arise depending on the pair of values ai, 
ai;  they are equal thanks to the integrability condition (12) which can be also expressed 
by saying that the effective coupling constants for electron-impurity and electron- 
electron scattering must be equal. 

To write down the solution of the eigenvalue problems (13) one introduces (Yang 
1967) a set of auxiliary quantities (‘spin momenta’) A1 . . . A M  which are determined 
from the M equations 

(1 l-ha+ic/2)”l  - ha -ic/2 
(1+ha-ic/2)N-1(Aa-ic/2)No=- ha +ic/2 

@ = I  A, A,-h,+ic - Aa -ic’ 1 + Aa +ic/2 (16) 

In terms of ha’s the ‘momenta’ k j  are given by 

iaj -ina +c /2  
exp(ik&) = n eii fl 

i # j  a = l  iaj-iAa -c/2 

where eij is a number of modulus unity. A simple calculation gives eij = 
exp[-i(ai - aj)q5], tan(q5/2) = J /2  for an electron-impurity pair (a j  -ai  = *l) and eij  = 
exp[-i(ai - u j ) 4 ] ,  tan 4 = U/4 for an electron-electron pair. When ai =aj ,  eij  = -1. 

To find the possible values of the ‘momenta’ k j  we take the logarithm of (17). For 
the electrons, aj  = *l ,  we get 

k j = -  2 ~ n ~ + a , N ~ q 5  +2a,N-,,4+aj(Na,-l)7r+ 1 [8(2Aa-2aj)-a,lr]) 

where 8(x) = -2 tan-’(x/c), 8 E (-T, T). 

into (6): 

M 

(18) 
L ‘i a=l 

The numbers nj  are arbitrary integers. To obtain the energy, we substitute (18) 

+constant (19) 
where the constant does not depend on the spin. At this point the definition of the 
system must be supplemented by providing some cut-off. It would have been more 
satisfactory to build the cut-off into the Hamiltonian but that would have rendered 
the model insoluble by Bethe ansatz. Therefore we follow the current practice (and 
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there is strong evidence (Andrei and, Lowenstein 1980) thdt there is nothing wrong 
with it) to cut off the integers ni from below by K .  

Now we take the logarithm of (16) and obtain 
M 

p = 1  
N1f3(2Aa-2)+N-1f3(2Aa + 2 ) + N o S ( 2 A a ) = - 2 ~ J a  + 1 @ ( A a - A B )  (20) 

where Ja are integers. 
In what follows, we assume that N 1  = N V 1  = Ne/2  = KL/47r are large numbers 

(thermodynamic limit). We also assume that the ground state is a singlet, so that 
M = $N. Let us introduce the density p of the numbers A, as 

NP (Aa 1 = (Aa+l -  ha )-' (21) 

and consider the case of antiferromagnetic coupling, c > 0 (it is questionable that one 
can make any sense at all of this model in the case of ferromagnetic coupling, since, 
in this case, the dynamical scale (Kondo temperature) is larger than the cut-off). 

In the thermodynamic limit the formula for the spin dependent part of the energy 
becomes 

The fact that the number of A's is M is expressed as 
B 

S = $ N (  p(h)dA. 
- E  

The integration boundary B in (23) and (24) can be eliminated and one obtains the 
desired dependence E ( S )  of the energy on the magnetisation S. 

Finally we have to rewrite (20) in the thermodynamic limit to obtain an equation 
for the density p 

2c 2No 2~ 
27rp ( A  ) = - 2c + +-- c 2 + 4 ( A  +1)' c2+4(A - 1 ) 2 )  N c 2 + 4 h 2  

The system of equations (23)-(24), when solved, allows one to find the dependence 
of E on S. Some preliminary results which can be obtained by solving (24)  have 
already been announced (Rezayi and Sak 1982). 

To summarise our results, we have found the condition of integrability of the 
model given by the Hamiltonian ( 1 )  and reduced the problem to an integral equation. 

We thank N Andrei for useful discussions. We also thank G Kharadze for making a 
preprint of the work of Yaparidze and Nersesyan available to us before publication. 
One of us (EHR) would like to thank S Doniach for discussions and for his hospitality 
at Stanford University during the initial stages of this work. K P Schotte has kindly 
informed us that he has treated a somewhat different but related model, arriving at 
parallel conclusions. 



L254 Letter to the Editor 

References 

Andrei N 1980 Phys. Rev. Letr. 45 379 
Andrei N and Lowenstein J H 1980 Phys. Rev. Left. 43 1698 
Baxter R J 1968 Ann. Phys., N Y  70 193 
Belavin A A 1979 Phys. Lett. 878 117 
Bethe A 1931 2. Phys. 71 205 
Gaudin M 1967 Phys. Lett. 24A 5 5  
Japardize G I and Nersesyan A A 1981 Pkys. Lett. 85A 23 
Mattis D and Lieb E 1962 Phys. Rev. 125 164 
Rezayi E H and Sak J 1982 Phys. Left. 89A 451 
Solyom J 1979 Adv. Phys. 28 201 
Vigman P B 1980 Pisma Z h .  Eksp. Teor. Fiz. 31 392 (Engl. transl. 1980 JETPLett. 31 364) 
Yang C N 1967 Phys. Rev. Lett. 19 1312 


